If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+20n+32=0
a = 3; b = 20; c = +32;
Δ = b2-4ac
Δ = 202-4·3·32
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4}{2*3}=\frac{-24}{6} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4}{2*3}=\frac{-16}{6} =-2+2/3 $
| 3/2x-5=2x+4 | | 8y-15y=49 | | 1-2w=w+1 | | 8/y+24/y=4 | | 9x+12=6x+4 | | 6+6x-x=7x-6 | | -y+10=4 | | 25+x^2+1=x^2 | | 5n+6+5n=-24 | | 31x+60/2=9x-4 | | 1/2(4m-18)=15 | | -2x+5=-1/3x-6 | | 13x=8x-15 | | Y+3r=-8 | | 60-4x=-20 | | 21-x=5x-3 | | 2-2x3+3=Z | | 5x+3-7x=4-10x+5 | | 2/6x+4=x/6 | | 26=6(5-m) | | .44x=88 | | 5(x-3)=3x-4 | | 2(x-3)-3(2+5)=3 | | -4u+2(u-6)=-8 | | 2.7+3x=6-8x | | 15x-5+5x+10=165 | | 31=2(y+8)-7y | | d+8=3d | | 18=7-8n-3n | | -20=6(w-6)-8w | | 44=-4z | | 3(x-4)+19=2(x*5) |